

 BIRTH & DEATH REGISTRY AUTOMATION SYSTEM

BiRDS

Prepared for: Dr. Samira Sadaoui

Prepared by: Sibdow Abdul-Jalil Iddrisu & Ibrahim Alotaibi

Date: 29th March, 2018

Course Name: CS872 – Software Engineering

1

Table of Contents
1. Problem Definition .. 3

2. Feasibility Study .. 4

2.1 Proposed System... 4

2.2 Proposed System vs Existing System .. 4

2.2.1 Existing System... 4

2.2.2 Comparison between Systems ... 5

2.3 Benefits of Proposed System to Stakeholders .. 6

3. Software Requirements Specifications ... 7

3.1 Functional Requirements .. 7

3.2 Use Cases .. 10

3.2.1 Use Case Diagrams for all User Types .. 10

3.2.2 Three Complex Use Cases .. 13

3.3 Quality Requirements ... 17

3.3.1 Security ... 17

3.3.2 Time Efficiency .. 17

3.3.3 Robustness .. 18

3.3.4 Correctness ... 18

3.3.5 User Friendliness .. 19

4. Design Specification .. 20

4.1 Logical Software Architecture ... 20

4.1.1 How the Architecture Works ... 22

4.1.2 Reasons for choosing the MVC Architecture ... 22

4.2 Design Patterns ... 23

4.2.1 Observer Pattern .. 23

4.2.2 Template Method Pattern ... 28

4.3 Class Diagrams .. 32

4.4 Pros and Cons of UML Tool Used .. 33

5. Source Code .. 34

5.1 Component Diagram ... 34

5.2 Deployment Diagram .. 35

5.3 List of Classes and functions ... 36

5.4 Screenshots of all tables ... 43

2

5.5 Link to web application ... 47

6. Technical Documentation ... 48

6.1 Programming Languages ... 48

6.2 Reused Algorithms and Programs ... 49

6.3 Software tools and Environment .. 50

7. Acceptance Testing ... 51

7.1 Functional Testing ... 51

7.2 Robustness Testing ... 60

7.3 Time-Efficiency Testing ... 68

8. Contribution of Each Team Member .. 74

References .. 75

List of Figures

Figure 3.2.1a Use Case diagram for the Registrar Actor……………………………………………………………10

Figure 3.2.1b Use Case diagram for the District Administrator Actor……………………………………….11

Figure 3.2.1c Use Case diagram for the Regional Administrator Actor……………………………………..12

Figure 3.2.2a: Activity Diagram for Assign Officer a Station Use Case……………………………………….14

Figure 3.2.2b: Activity Diagram for Manage User Account Use Case………………………………………..15

Figure 3.2.2c: Activity Diagram for Birth Cert Request Use Case………………………………………………16

Figure 4.1a Logical Architecture of our system…………………………………………………………………………21

Figure 4.2.1a: Class diagram of Observer Design Pattern Implementation……………………………….26

Figure 4.2.2a: Class diagram of Template Method Design Pattern…………………………………………..30

Figure 4.3a: Class diagram of the main entities of our system………………………………………………….32

Figure 4.3b: Database schema of how the entities interact of our system……………………………….33

Figure 5.1a: Component Diagram showing organization of code……………………………………………..34

Figure 5.2a: Deployment Diagram regarding hardware configuration of source code………………35

Figure 5.4a: All database tables shown within SQLyog GUI application…………………………………….43

3

1. Problem Definition

“A name and nationality are every child’s right, enshrined in the Convention on the Rights of

the Child and other international treaties” [2]. Equally, death registrations are important, as

countries need to know how many people die each year as well – and the main causes of their

deaths – in order that they may redesign or improve their health systems to reduce those

deaths caused by diseases. However, according to the WHO, two-thirds (38 million) of 56

million annual deaths are still not registered and almost half of the world’s children go

unregistered [1].

Population is constantly changing sometimes quiet rapidly that, it is not economically feasible

to conduct censuses every now and then. These changes in population is measured by the

difference between population size at different times or dates. The two main elements known

to affect population growth are births and deaths. These elements are very difficult to obtain

due to numerous factors. Sometimes, the fact that individuals have to form long queues just to

register throws them off. This problem may only arise when things are done manually and

applicants would have to fill out forms by writing, hence delaying and prolonging the

registrations. Prospective applicants may sometimes have to wait months-on-end before

getting feedback from these registry departments regarding their applications, because it has to

be sent to the central registry which may be miles away, hence many loose faiths in the

efficiency and effectiveness in the department and are reluctant to register though prescribed

by the law.

These shortfalls could be overcome by the use of ICT to develop a very effective and efficient

software system, i.e. BiRDS, to help the process.

This study will also aim at integrating the birth and death registration into the health sector,

where all data regarding births and death could easily be captured quickly and accurately.

BiRDS shall aim to decentralize the activities of the department and collate the activities at the

various registration centers in the districts to the regional offices rather than sending them out

of the region to a central registry which could easily be overwhelmed in such instances.

4

2. Feasibility Study
In this section, we shall briefly describe the proposed system; the benefits of having such a

system proposed to solve the above related problem as opposed to the current system and

deciding whether it is economically feasible to proceed with development.

2.1 Proposed System

Vital human information is now an important commodity in the world and sells very much. For

such reason this information should be made available. A nation spends so much on population

census because of lack of a complete computerized registration system. Also, applicants spend

so much time and resources on registration and obtaining of certificate. With the advent of

Information Communication Technology (ICT), a nation can make very good use of its resource

by investing in such a system. Therefore, the BiRDS software system is being proposed.

The Birth and Death Registry Automation System (BiRDS) is a web-based system that seeks to

eliminate the challenges the department currently faces in the registration of births and deaths

occurring, as well as in the issuance of these certificates.

2.2 Proposed System vs Existing System

2.2.1 Existing System
The current mode of operation is a manual way of registering a child and a deceased person.

With this, registration takes place at the hospital, a health center or any location within the

community for example under a tree. This is always done by an official assigned to that post.

With the birth registration process, the birth of every child is to be registered in the district

where the birth occurred. An informant is required to produce evidence of birth, such as a

clinical weighing card. A Registration Assistant administers a questionnaire, (the Birth Report

Form "A") to the informant. Information thereby collected is recorded in the center’s register of

births following which a birth certificate is issued [3].

5

The Registration Assistant at the registration center sends the Register of Births and the

Registration Forms to the District Office that the center falls under. The Registration Assistant

then transfers all the entries from the Center Register into the District Register of Births. The

District Officer having collected all entries from the various registration centers under him/her,

then sends the District Register of Birth and the Registration Forms to the Regional Office. The

Officer then transfers all the entries from his/her register into the Regional Register of Birth.

The Regional Officer also scans all the registration forms from the various districts, save them

on a CD-ROM or pen drive and then travel to Accra, the Central Registry Office with the CD-

ROM or pen drive and the Regional Register of Birth (“Big Book”) every Wednesday for

verification and issuing of certificates. When birth certificates are brought from the Central

Registry Office, they are sorted according to districts for the various district officers. For an

applicant of a birth certificate, it takes at least 21 working days, i.e. three (3) weeks or more to

get a certificate from the department.

The death registration is done almost through the same method as the birth registration, but

with this a Death Report Form "B" is issued by the registration assistant.

2.2.2 Comparison between Systems
To the best of our knowledge, there was no computerized system for the department to collate

these records. The manual system has been in existence for some time now and has become

cumbersome and problematic in this current age. It is inefficient and ineffective to help the

department achieve its goals. This proposed system, which aims to computerize the processes

performed by the department shall ultimately solve the problems with the current system,

which includes delay in processing, difficulty in retrieving data, etc.

6

2.3 Benefits of Proposed System to Stakeholders

The aims and objectives of this proposed system brings a lot of benefits to stakeholders, these

include:

➢ To provide an economical and convenient means of getting births and deaths registered

➢ To provide a computerized database on all citizens in the country

➢ To reduce time spent on registration and in obtaining a certificate.

➢ To help reduce the amount of errors made by applicants and registrars alike when filling

out an application form

➢ To reduce the stress the department goes through to provide services to applicants

➢ To provide means of interaction between the various communities and the registry

offices

➢ To help expediate the retrieval of birth and death records from a centralized storage

➢ To help provide the government with reliable data that shall help in making decisions to

enhance the health sector as well as the economy

7

3. Software Requirements Specifications
In this section, we introduce the actors of the system and go ahead to list their functional

requirements. We then explain the use case diagrams of the system along with three (3) most

important use cases of the system. Finally, we explain the quality requirements of the system.

3.1 Functional Requirements

The proposed system shall have 3 main actors, who are able to perform functions that would

lead to the achievement of the overall goals of the system. These actors are:

➢ Regional Administrator

➢ District Administrator

➢ Center Registration Assistant (Registrar)

Regional Administrator

➢ The regional administrator shall be able to add new users to the system, who report

directly to him/her (i.e. District Admins and Registrars)

➢ The system shall also enable this user to easily update system user details working

under their jurisdiction, should in case the system user personal details change

➢ The system shall enable this user to manage all users accounts (i.e. activate/deactivate

account) within their jurisdiction (i.e. working under his/her region)

➢ The system shall allow this user to easily change their passwords

➢ The system shall allow this user to easily create new district offices in their region

➢ The system shall allow this user to manage (edit/delete) the district offices in their

region of management

➢ The system shall allow this user to create new center offices under the various districts

in their region

➢ The system shall as well allow this user to manage(edit/delete) these center offices in

their region

8

➢ The system shall allow this user to make the final approvals of all birth details entered

into the system by the registrar and approved by the district admin

➢ The system shall allow this user to make the final approvals of all deceased details

entered into the system by the registrar and approved by the district admin

➢ The system shall allow this user to easily approve and print all birth certificate request

made within their region

➢ The system shall allow this user to easily approve and print all death certificate request

made within their region

➢ The system shall provide user with a means of making a general search for a particular

birth or death details

District Administrator

➢ The system shall allow this user to easily assign a registrar working within their district

to a particular station (district center)

➢ The system shall allow for this user to easily change their passwords

➢ The system shall allow for user to easily approve all registration of birth details entered

into system by registrar, before it is being forwarded to the regional level

➢ The system shall allow user to easily approve all registration of deceased details entered

into system by registrar, before it is being forwarded to the regional level

➢ The system shall provide the means for user to easily approve birth certificate requests

made within their district before being forwarded to regional admin’s office for printing

➢ The system shall provide the means for user to easily approve death certificate requests

made within their district before being forwarded to regional admin’s office for printing

➢ The system shall provide user with a means of making a general search for a particular

birth or death details

9

Center Registration Assistant (Registrar)

➢ The system shall provide a means for this user to easily change their passwords

➢ The system shall provide a means for the user to register births details into the system

➢ The system shall provide the means for the user to register deceased details into the

system

➢ The system shall provide user with a means of making a general search for a particular

birth or death details

➢ The system shall provide the means for user to easily place requests for a birth

certificate for clients

➢ The system shall provide the means for user to easily place requests for a death

certificate for clients

10

3.2 Use Cases

In this section, we provide a detailed use case diagram for all users of the system. We then give

a detailed description of the three (3) most complex use cases in the system.

3.2.1 Use Case Diagrams for all User Types
Registration Center Official (Registrar):

The registrar is the user who initiates most of the processes that are executed within the

system. This user is responsible of entering birth and deceased details of individuals into the

system. S/he is also responsible of placing a request for a birth or death certificate for an

applicant. This user is also able to make a general query on birth and death details stored in the

centralized database as well as being able to amend his/her user account information.

Figure 3.2.1a Use Case diagram for the Registrar Actor

11

District Administrator

The district administrator is the user whom the registrar reports directly to. After the registrar

has entered the birth or deceased details into the system, it is forwarded to this user who

confirms everything needed in the application is present before s/he forwards it to the regional

level. This user also is responsible for the approval and forwarding of all birth and death

certificate requests made under his/her district to the regional level. S/he is also able to assign

staff (registrars) under his district to various district centers, make a general query on birth and

deceased details stored in the centralized database as well as being able to amend his/her use

account information.

Figure 3.2.1b Use Case diagram for the District Administrator Actor

12

Regional Administrator

The regional administrator is the overall manager of the above 2 actors. S/he is responsible for

registering new system users to serve under his/her region in the various districts, as well as

manage these users. He also can register new district offices within the region and assign

registration centers to a particular district. S/he also does the final approval of the birth and

deceased registration details before it is permanently saved into the centralized database. The

regional administrator also can print all the certificates request coming in from the various

district offices under his/her region. S/he also can make a general query on birth and deceased

details stored in the centralized database as well as being able to amend his/her user account

information.

Figure 3.2.1c Use Case diagram for the Regional Administrator Actor

13

3.2.2 Three Complex Use Cases
The selected three (3) most complex use cases we have selected are:

➢ Assign Officer a Station: This allows the district administrator to assign staffs working

within the district to one district registration center

➢ Manage User Account: This allows the regional administrator to change the accounts

status (i.e. Activate or deactivate a user account) for all staff working under their region

of management

➢ Birth Certificate Request: This allows the registration center officer (registrar) to search

for an applicant’s record and submit a request for a birth certificate

USE CASE: ASSIGN OFFICER A STATION

A group of registration office assistants (registrar) usually work under a certain district

administrator, who is their overall boss. The district being managed has a number of center

offices (termed stations) where registrars could be assigned to work. A new user just added to

the district is not assigned any center as at that time, it is then the responsibility of the district

administrator to do the needful and assign the registrar a station so they may start work. Also,

if the registrar is already assigned a station but it becomes necessary for him/her to be

reassigned to a different center office, the district administrator can do so through this use

case. One important constraint though is that, the district administrator appears in the list of

users, but cannot assign him/her self as the form field that enables activity would be disabled

upon selecting themselves.

I. Initiating Actor: District Administrator who needs to assign a registrar to a station

II. Precondition: District Administrator is logged in and registrar is working under his/her

district of management

III. Scenario 1: Assigning an existing registrar to a center office (station)

14

• District Administrator search for registrar account details in District Officers Table

• District Administrator selects registrar row to view details

• District Administrator changes user center office

• System then updates registrar details with selected station

Scenario 2: Assign a new registrar to a center office (station)

• District Administrator search for registrar account details in District Officers Table

• District Administrator selects registrar row to view details

• District Administrator selects a center office for new registrar

• System then updates registrar details with selected station

IV. Postcondition: Registrar is assigned to a center office (station) under district

V. Benefiting Actor(s): Registrar and District Administrator

Figure 3.2.2a: Activity Diagram for Assign Officer a Station Use Case

15

USE CASE: MANAGE USER ACCOUNT

I. Initiating Actor: Regional Administrator needing to change a user account status

II. Precondition: Regional Administrator is logged in and user is working under his region

III. Scenario: Manage User Account

• Regional Administrator search for user account details in Regional Officers Table

• S/he then identifies the row of the user account details

• Regional Administrator then selects the ‘Activate’ or ‘Deactivate’ link depending on

current state of user account status

• System then update the user account details according to the link selected

IV. Postcondition: User account status is changed to either ‘Active’ or ‘Inactive’

V. Benefiting Actor(s): Registrar, District Administrator, Regional Administrator

Figure 3.2.2b: Activity Diagram for Manage User Account Use Case

16

USE CASE: BIRTH CERTIFICATE REQUEST

I. Initiating Actor: A registrar who aims at placing a request on behalf of a client for a birth cert

II. Precondition: Registrar is logged into system and user making request has his/her birth detail

already entered into the system as well and approved by the district and regional offices

III. Scenario: Birth Certificate Request

• Registrar search for user by their birth Id or full name criteria

• Registrar enters search text based on criteria chosen above

• User birth details appear on the table list

• Registrar then selects the birth detail by clicking on the “Select” link

• Birth details are viewed in detail on a separate page

• Registrar then submits request on behalf of applicant

IV. Postcondition: Request for a birth certificate has been sent for approval and printing

V. Benefiting Actor(s): The Registrar who seeks to request a birth certificate for a client

Figure 3.2.2c: Activity Diagram for Birth Cert Request Use Case

17

3.3 Quality Requirements

3.3.1 Security

• The system shall start with a Login page where users are required to enter correct

credentials in order to be allowed access into the core functionalities. Allowing anyone

access without credentials validation to just enter data into the system will have a

tremendous effect on the data integrity, in that the data cannot be trusted and used.

• There shall be data protection mechanisms in place, i.e. Authorization, so that the

different user groups only see data they are authorized to see. For instance, the

Registrar cannot see the list of system users nor can they activate/deactivate a user

details. You work within your jurisdiction.

• The system shall also provide a data encryption mechanism to encrypt all user

passwords in a SHA-256 format. This encryption format generates an almost-unique,

fixed-size 256-bit (32-byte) hash [8] of all user passwords and is a one-way function, so

the resulting password cannot be decrypted back to the original value. So, say a hacker

getting access to user account data from database cannot login with details because the

password cannot be decrypted.

3.3.2 Time Efficiency
• The system shall be very responsive and take no longer than 10 seconds in registering a

birth/deceased details, making a certificate request, approving of requests and even the

printing of certificates. This system is proposed to cut down the time applicants and the

service provider take to achieve their goals in the currently existing system. If a user has

to wait about a minute or two for a process to load, then it is no different from the

previous system. Hence should have a better and faster response time

• During searching the database for a particular birth/deceased details, system shall be

able to retrieve record in a very quick and efficient manner for the user

18

3.3.3 Robustness
• Some users do not understand the implications of what they sometimes enter into a

system. The system input fields should be able to accept and process all user inputs and

display meaningful and appropriate error messages to them if data passed into fields are

wrong, rather than come to an abrupt halt or crush

• For instance, if the user enters a number as a first name of an applicant, which should

rather be a string value, the system processes this field and detects it received a number

instead of a string value. An appropriate error message is then displayed to the user to

change that field to a string value before processing and saving of data can be done.

3.3.4 Correctness
• This is an important software requirement, in that it ensures that the design

requirements are implemented as was originally planned. When a system user should

enter an input data into the system, the output information must be the correct and

expected result

• A correct username and password is required for a user to have access to the

functionalities provided by the system. The credentials entered is checked against

access control list in the database to make sure user is authorized to use the system. A

wrong input shall deny the user from entering and a prompt shall be rendered

requesting for correct credentials

• A system user is likely to enter a date of birth or date of death greater than even the

current date the registration is taking place, which shouldn’t be the case because a date

of birth/death cannot occur in the future. The system shall provide a mechanism to

make sure such dates are entered correctly by providing appropriate error messages

• A search made by a user shall return the desired results rather than randomly selecting

from the storage

19

3.3.5 User Friendliness
• To the end user, the interface is the system itself and they do not really care about what

goes on within the system. Hence, having a nice graphical user interface would not only

make the user happy but help him/her better achieve their goals better. As such, the

system shall have very beautiful and colorful user interfaces and shall be responsive (i.e.

adjust very well to the size of the screen on which it is used)

• The system shall be designed as much as possible to match with the users’ mental

model [4], in that their real world thinking of how the application should work wouldn’t

be different from how the system actually works

• The system shall provide for the user an overall positive user experience

20

4. Design Specification
In this section, we focus on the logical software architecture and design pattern that are used in

the development of this system. We then provide the class diagrams to explain further the

implementations of the design patterns used.

4.1 Logical Software Architecture

There are several logical software architectures out there that could help us realize the goals

we seek to achieve with this project. But looking through these architectures, the MVC (Model

View Controller) architecture stood out to be a better choice for our system. It separates a

software application into three inter-connected parts. This is usually done to separate the

internal representation of information from the way information is presented to and accepted

from the user [5].

Components in the MVC Architecture Include:

• The Model: This component is responsible for the direct management of the data, logic

and the ‘rules of engagement’ in the software application. The model is constructed

without concern for its look and feel when displayed to the user. Our system would

have quiet a number of models which would include: System Users, Birth Registration

Details, Certificate Requests, etc.

• The View: This provides a graphical representation of our underlying models. A model

may have multiple views attached to it, i.e., we can have several different displays for

some data or model.

• The Controller: This component is responsible for processing and decision making. It

may accept input and convert it to a command for the model or view. In our system, it

shall be responsible for flow control and validation of user inputs before they are passed

into the model. Framework used already comes with out-of-the-box controllers

21

Figure 4.1a Logical Architecture of our system

22

4.1.1 How the Architecture Works
1. The user initiates the process by sending an HTTP request from the browser to the system

2. The system then chooses the appropriate controller for the user request, and passes control

to it

3. The chosen controller then decides the appropriate actions required to complete request

4. Based on the action required, the underlying Model is initialized for the user request

5. The Model then sends a query to the database storage, and the corresponding data is

returned into the Model

6. Based on the changes in the Model, the attached Views shall be notified and updated

7. The view is then sent back and rendered on the user’s browser in an HTTP response

There may exist different scenarios based on the kind of user requests. For instance, if the user

request does not necessitate any database interaction, then the Controller may simply call only

the view without using the Model.

4.1.2 Reasons for choosing the MVC Architecture
The MVC architecture has several advantages to our system as compared to the other

traditional architecture out there. The reasons why we chose this architecture over the others

include:

• Provides a clean separation of concern to our system by isolating the model (business

logic) from the Views (user interfaces). Business logic usually doesn’t mix well with UI

code, so when the two are mixed, the application becomes much harder to maintain

and less scalable. MVCs separation of concern shall help our application be more loosely

coupled and as a result it shall be easier to modify either the views of the application or

the underlying models without one affecting the other.

• MVC assures that there is consistency between the Views and the Models of an

application. This feature is a fundamental requirement of our application as an update

to certain models should automatically refresh the attached views without them

23

explicitly being refreshed. MVC provides us with the perfect platform for such an

implementation.

• It also allows us to attach as many views as possible to the models of our application.

4.2 Design Patterns

In this section, we present the details about the design patterns that we used in our system, the

reasons for using such design patterns and the benefits they bring to our system in general.

There are a lot of design patterns out there to help solve specific problems that may arise

during a software development. Our system requires us to use some of these patterns to help

solve the problems that our system brings along. There are more than two design patterns used

in our project but the two main ones we shall be discussing are:

1. Observer Pattern

2. Template Method Pattern

4.2.1 Observer Pattern

The observer design pattern is one of the behavioral patterns proposed by the Gang of Four [6].

The observer design pattern defines a one-to-many dependency between object in a system, so

that when one of the objects change state, all other objects depending on it are notified and

updated automatically – More like a publisher-consumer fashion.

24

Reasons for choosing pattern

• Our system has a form of chain of responsibility, where one user group is directly

dependent on a second user group. In this case, the first user group needs to know if an

action has been performed by the second and should be automatically notified of this

action. These actions include a change to the underlying model, i.e. a new input, an

update, etc. Users should not have to refresh pages to see these changes, and there is

no better way to achieve such a feat than to use the observer design pattern

• Our system also need to display data from a model in different ways to the different

user groups, and the observer design pattern shall help us achieve this goal

• With the logical software architecture chosen, the design pattern that shall help us

easily implement the notification system within components of the architecture is the

observer pattern

Where it is implemented

This observer pattern has been implemented in multiple instances within our application. We

shall discuss in detail one of the instances it has been used within the system. When the

Registration Center Officer (Registrar) makes a request for a new Birth Certificate into the

system, the District Admin is immediately notified of this change and his/her view of the model

is automatically updated. This allows the District Admin to see all the incoming requests in real

time rather than having to refresh the view manually from time-to-time in order to see these

changes.

The CertificateRequestController.java - more like the concrete subject, first creates and fires

the event into the application container when the user clicks to save a birth certificate request.

The Observer class for the birth certificate request, which is called BirthCertObserver.java

contains within it a method called the onBirthCertRequestCreate (@Observes @Create

BirthCertRequest birthCertRequest), which is responsible for observing events within the

application container (with the @Observes declaration). It then specifies the type of event to

25

observe: Create BirthCertRequest (which means any event fired into the application container

with a @Create qualifier and the object/payload attached to event is the BirthCertRequest).

This observer method then takes the event fired and then decides as to what to do with it, in

our case it sends a push notification through the district admin channel, defined in the

DistrictAdminNotify.java class, to the page displaying this model and then forces the page to

update the view to accommodate for the new changes.

Path on GitHub to CertificateRequestController.java:

https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/controllers/CertificateRequ

estController.java

Path on GitHub to BirthCertObserver.java:

https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/observer/BirthCertObserver.java

Path on GitHub to DistrictAdminNotify.java:

https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/observer/notify/DistrictAdminN

otify.java

Other Implementations of the Observer Pattern within the System

• On Registrar save new birth/deceased details, notify and refresh automatically the

District Admins view of model as well as the general search views of model so views

remain consistent with underlying model

• On District Admin Approve Birth and Deceased registrations models, notify and refresh

the general search views of the model as users may need to know in real time if a

particular data point/row in the model has changed.

• On Registrar place a request for a Death certificate for a client, notify and update the

District Admin’s view attached to the underlying models

https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/controllers/CertificateRequestController.java
https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/controllers/CertificateRequestController.java
https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/observer/BirthCertObserver.java
https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/observer/notify/DistrictAdminNotify.java
https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/observer/notify/DistrictAdminNotify.java

26

Complete Class Diagram of the Observer Design Pattern

Figure 4.2.1a: Class diagram of Observer Design Pattern Implementation

27

Algorithms Corresponding to Observer Design Pattern

Algorithm 1: CertificateRequestController Class

Public class CertificateRequestController() Main class defined to handle certificate requests

//Declare Event to be fired when a Registrar sends a request for a Birth Certificate

@Inject @Create Qualifiers that makes the Event unique from other events

Event<BirthCertificateObject> eventName;

Public sendBirthCertRequest() function that handles sending birth certificate request

If(Birth Certificate Request Sent)

eventName.fire(BirthCertificateObject)

Else

 Show error message to user

END  terminate sendBirthCertRequest() function

END  terminate main class CertificateRequestController()

Algorithm 2: BirthCertObserver Class

public class BirthCertObserver() class of BirthCertificate Observer

String Channel = “/districtAdmin”  Declare Chanel to perform push notifications

// @Observes annotation automatically makes method an observer for subjects with events
declaring @Create qualifiers and with payload BirthCertificateObject

Public void onBirthCertRequestCreate(@Observes @Create BirthCertificateObject instance)

 Push notifications through Channel variable to the views

END  terminate onBirthCertRequestCreate function

END  terminate class BirthCertObserver()

Algorithm 3: DistrictAdminNotify

@PushEndpoint("/districtAdmin")

public class DistrictAdminNotify() Notification channel class – sends message to views

@OnMessage; encode message into JSON format lightweight for easy transmission

Return message to PushEndpoint

END  terminate DistrictAdminNotify class

28

4.2.2 Template Method Pattern

The template method design pattern is a behavioral pattern, which implies they are mainly

responsible for managing algorithms, relationships and responsibilities between the various

classes and objects in a software system. This design pattern is intended to define the skeleton

of an algorithm in an operation and leaving some steps to be implemented by the subclasses.

They allow subclasses to redefine certain steps of an algorithm without changing its structure

[6]. It is predominantly used in frameworks (large scale reuse infrastructure).

Reasons for choosing pattern

• Our system has two different components that have a lot of similarities in terms of steps

used to reach a particular goal. In this case, if a particular process should change,

duplicate efforts would be required to implement those changes in both of the

components – which may even increase in the near future as the system evolves and

grows. Hence it became necessary to have these common steps defined in a template so

as to be easily accessible to the subclasses and when a change is required (say, steps

required to reach goals changed), it is done in the template class and subclasses do not

need to worry much about the effect of such changes.

• It also affords the components (subclasses) in our system the freedom to easily override

and redefine functions within the template class if it became necessary, so as to suite

their needs.

Where it is implemented

The CertificateTemplate.java class defines the abstract class where the steps required to

achieve the goal of printing a Birth or Death Certificate are defined. The GenerateBirthCert.java

class extends this CertificateTemplate.java class and overrides the necessary methods so as to

achieve its purpose of generating and printing a Birth Certificate. The

GenerateDeathCertificate.java class also overrides and customizes the necessary methods in

29

order to generate a Death Certificate for a client. The different Certificate generation classes

are then called and used in the RegionalApprovalsController.java class (methods on line 221

and line 240)

Path on GitHub to CertificateTemplate.java:

https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/reports/CertificateTemplate.ja

va

Path on GitHub to GenerateBirthCert.java:

https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/reports/GenerateBirthCert.java

Path on GitHub to GenerateDeathCertificate.java:

https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/reports/GenerateDeathCertific

ate.java

Path on GitHub to RegionalApprovalsController.java:

https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/controllers/RegionalApprovals

Controller.java

Complete Class Diagram of the Template Method Design Pattern

The class diagram of the template method pattern is shown below in figure 4.2.2a. The

RegionalApprovalController, which is only invoked by the Regional Administrator user group is

the client to the CertificateTemplate abstract class. The ‘final printCertificate()’ function

contains the sequential steps required to print a particular certificate and hence cannot be

overridden by the subclasses but only called to perform the original function its been defined to

perform. But the remain methods may be overridden and customized to achieve the desired

goal.

https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/reports/CertificateTemplate.java
https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/reports/CertificateTemplate.java
https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/reports/GenerateBirthCert.java
https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/reports/GenerateDeathCertificate.java
https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/reports/GenerateDeathCertificate.java
https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/controllers/RegionalApprovalsController.java
https://github.com/Siaj/birdsApp/blob/master/src/main/java/com/app/birds/web/controllers/RegionalApprovalsController.java

30

Figure 4.2.2a: Class diagram of Template Method Design Pattern

31

Algorithms Corresponding to Template Method Design Pattern

Algorithm 1: CertificateTemplate Class

abstract class CertificateTemplate ()  Main abstract class created
// Methods are defined within body of class
final printCertificate()  Final method implemented in template class can’t be overridden
 //Contains the other abstract methods in a sequence of steps to reach goal
 loadPrintDetails();
 updateDatabase();
 renderCertificate();
END  function printCertificate Terminates here

// Abstract methods defined below to be overridden and modified by subclasses
abstract loadPrintDetails();
abstract updateDatabase();
abstract renderCertificate();
END  class terminates here

Algorithm 2: GenerateBirthCertificate and GenerateDeathCertificate Class

class ClassName() extend CertificateTemplate  extends the CertificateTemplate() abstract class

//Overrides abstract methods in the extended class
@Override
public List loadPrintDetails();  Defines own implementation of this method
public void updateDatabase();  Defines own implementation of this method
public void renderCertificate();  Defines own implementation of this method
END  class terminates here

Algorithm 3: RegionalApprovalsController Class  Uses template design pattern

Public printBirthCertificate()  Method that invokes the CertificateTemplate

CertificateTemplate Obj = new GenerateBirthCertificate()  Certificate template of type Birth
Use Obj created to Call printCertificate() final method in CertificateTemplate() abstract class

-- The flow process defined to generate certificate is followed
-- Certificate is then rendered to user’s view in pdf format and can be printed

32

4.3 Class Diagrams

The class diagram shown below in figure 4.3a shows how entities in our system interact with

one another. Due to the large number of classes in our application, we are showing only the

class diagrams that are involved in the workings of the design patterns used in our application.

Figure 4.3a: Class diagram of the main entities of our system

33

Figure 4.3b: Database schema of how the entities interact of our system

4.4 Pros and Cons of UML Tool Used

The main UML tool used for designing the UML diagrams for our project was the Star UML

(version 2.8.1, unregistered version). We found some good stuff about it that helped us quickly

design our UML diagram. But as the saying goes, “Nothing is perfect”, we found some other

challenges using the application.

To start with, the application is very easy to use out of the box. All labels, menus and other

interface entities are clear and easily understandable. It even had a feature where we could

import the codes of our classes from our project and easily create our class diagrams from

there, instead of starting from scratch.

Some challenges we had using it included: It does not allow the use of special character in

labelling, for example, when we tried to name TCP/IP it did not allow it so we had to go with

TCPIP. Also, the arrows are sometimes not directed the way we want them and redirecting

them is always a big challenge.

Overall, we found Star UML to be useful and beneficial as we easily created all our UML

diagrams

34

5. Source Code
In this section, we present the implementation details of our system which shall include the

Component Diagram, Deployment Diagram, number of lines of codes written and screen

captures of the database storage.

5.1 Component Diagram

The component diagram of our system in the figure below shows the main components we

have within our system and the connection/interaction between these components.

Figure 5.1a: Component Diagram showing organization of code

35

5.2 Deployment Diagram

Our software system is hosted on two (2) separate servers. There is a separate server for the

web application, that is the web server part defined in our logical architectural design. The

other server being the database server which hosts our software system’s database and all its

related tables. The client machine may use any web browser to access the software system.

Tests have been carried out on using all the major browsers to access our system, hence users

would not need to worry about the kind of browser they have on their computer system.

The software system is hosted on Jelastic (NYC) Platform-as-a-Service (paas) infrastructure.

Application Server Public IP: 185.44.65.95:4848

Database Server Public IP: 185.44.66.235

Figure 5.2a: Deployment Diagram regarding hardware configuration of source code

36

5.3 List of Classes and functions

In this section, we shall provide the class and function names implemented by the team in this

project. The project is quite huge, so we shall be focusing on the main functional parts of the

program only.

• User Authentication

Class responsible for authenticating a system user before allowing access into the system. It

also checks if a user has an active session before allowing access to certain URLs. Finally, it

handles system user logout and clearing of all sessions.

public String authenticateUser()

public void isLoggedIn()

public String logOutUser()

• User Account Controller

Class responsible for handling all user management functionalities.

public void searchAccount()

public void activateUserAccount()

public void deActivateUserAccount()

public void changePassword()

public void resetPasswordChageFields()

• System User Controller

Class responsible for adding a new system user as well as amending user details

37

public void searchUser()

public void saveNewUser()

public void updateUser()

public void rowSelectData()

public void resetButton()

• Birth Registration Controller

Class responsible for handling all the registration of births into the system

public String generateBirthRegistryId()

public void saveBirthRegistryDetails()

public void checkBeforeSave()

public void saveBirthRegistrationBtn()

public void resetButton()

public void setViewOnInformantRelation(ValueChangeEvent event) throws ParseException

• Deceased Registration Controller

Class responsible for handling all the registration of deaths into the system

public String generateDeceasedRegistryId()

public void deceasedRegistration()

public void checkBeforeSave()

public void saveButton()

public void resetButton()

public void setViewOnDeceasedBurialStatus(ValueChangeEvent event) throws ParseException

38

• Certificate Request Controller

Class that helps Registrar to make a request for a birth or death certificate for clients

public void searchBirthDetails()

public void searchDeathDetails()

public void resetEntry()

public void sendBirthCertRequest()

public void cancelBirthCertRequest()

public void sendDeathCertRequest()

public void cancelDeathCertRequest()

public void fetchBirthDetails()

public void fetchDeathDetails()

• Regional Approvals Controller

Class that holds all the functionalities to assist Regional Admin make approvals to all requests

public void approveBirthDetails()

public void approveDeathDetails()

public void fetchBirthDetails()

public void fetchBirthCertRequestDetails()

public void fetchDeathDetails()

public void fetchDeathCertRequestDetails()

public void cancelRequest()

public int noOfRegBirths()

public int noOfRegDeaths()

public int noOfRegBirthCertRequests()

39

public int noOfRegDeathCertRequests()

public void loadBirths()

public void loadDeceased()

public void loadBirthCerts()

public void loadDeathCerts()

public void printBirthCert()

public void printDeathCert()

resetDistrictSelected()

• District Approvals Controller

Class that holds all the functionalities to assist District Admin make approvals to all requests

public SystemUser getSystemUser()

public void approveBirthDetails()

public void approveBirthCertRequest()

public void approveDeathDetails()

public void approveDeathCertRequest()

public void fetchBirthDetails()

public void fetchBirthCertRequestDetails()

public void fetchDeathDetails()

public void fetchDeathCertRequestDetails()

public void cancelRequest()

40

• General Search

Class holding the functionalities to allow system user to make a general search in the database

public void searchBirthDetails()

public void resetBirthSearch()

public void closeBirthSearch()

public void fetchBirthRowData()

public void ammendBirthDetails()

public void searchDeceasedDetails()

public void resetDeceasedSearch()

public void closeDeceasedSearch()

public void fetchDeceasedRowData()

• Birth Registration Observer

Class responsible for holding the observers for the birth registration model in system

public void onBirthDetailsCreate(@Observes @Create ChildBirthDetail birthDetail)

public void onRegistrarBirthDetailsUpdate(@Observes @Update @Registrar ChildBirthDetail
birthDetail)

public void onDistrictAdminBirthRegApproval(@Observes @Update @DistAdmin
ChildBirthDetail birthDetail)

public void onRegionalAdminBirthRegApproval(@Observes @Update @RegAdmin
ChildBirthDetail birthDetail)

• Deceased Registration Observer

Class responsible for holding the observers for the deceased registration model in system

41

public void onDeceasedDetailsCreate(@Observes @Create DeceasedDetail deceasedDetail)

public void onDistrictAdminBirthRegApproval(@Observes @Update @DistAdmin
DeceasedDetail deceasedDetail)

public void onRegionalAdminBirthRegApproval(@Observes @Update @RegAdmin
DeceasedDetail deceasedDetail)

• Birth Certificate Observer

Class responsible for holding the observers for the birth cert requests model in system

public void onBirthCertRequestCreate(@Observes @Create BirthCertRequest birthCertRequest)

public void onBirthCertApprovePrint(@Observes @Update @RegAdmin BirthCertRequest
birthCertRequest)

• Death Certificate Observer

Class responsible for holding the observers for the deceased registration model in system

public void onDeathCertRequestCreate(@Observes @Create DeathCertRequest
deathCertRequest)

public void onDeathCertApprovePrint(@Observes @Update @RegAdmin DeathCertRequest
deathCertRequest)

• Certificate Template (abstract class)

Defines the framework that other classes shall use to generate a birth or death certificate

public final void printCertificate(T t, S s, C c, F f)

public abstract List loadPrintDetails(T cl, S su)

public abstract void updateDatabase(T bcr, F f)

public abstract void renderCertificate(C c)

42

• Generate Birth Cert

Class that extends the certificate template to generate a birth certificate for clients

public List loadPrintDetails(BirthCertRequest cl, SystemUser su)

public void updateDatabase(BirthCertRequest bcr, BirthCertRequestFacade bcrf)

public void renderCertificate(Collection c)

• Generate Death cert

Class that extends the certificate template to generate a death certificate for clients

public List loadPrintDetails(DeathCertRequest cl, SystemUser su)

public void updateDatabase(DeathCertRequest dcr, DeathCertRequestFacade dcrf)

public void renderCertificate(Collection c)

43

5.4 Screenshots of all tables

Below are the screenshots of all tables used in our software system. In all, we have 13 active

database tables used within the system though there are more. All our databases are created

and managed within the SQLyog Ultimate edition GUI application.

Figure 5.4a: All database tables shown within SQLyog GUI application

44

Screenshots of key tables with system data

Table: System_User

Purpose: To keep records of the various users in the system

Table: User_Role

Purpose: Holds the data for the different user groups we have in the system

Table: Region

Purpose: For storing the various Regions within the service area

45

Table: District

Purpose: Holds the various districts located within the various regions

Table: District Center

Purpose: For storing the various offices located within the districts

Table: Gen_Id

Purpose: For keeping track of the birth and death numbers so as to assign unique Ids

Table: Child_Birth_Detail
Purpose: Table for storing the registrations of births

46

Table: Child_Guardian
Purpose: Table for storing the guardian/parent information of the birth registration details

Table: Informant_Birth
Purpose: Storing the informant details of a birth registration

Table: Deceased_Details
Purpose: Table for storing the registrations of deceased persons

Table: Informant_Death
Purpose: Storing the informant details of a deceased registration

47

Table: Birth_Cert_Request
Purpose: Used for storing all the request made for a birth certificate

Table: Death_Cert_Request
Purpose: Used for storing all the request made for a death certificate

5.5 Link to web application

Complete Source code: https://github.com/Siaj/birdsApp/

Running application: http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app

https://github.com/Siaj/birdsApp/
http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app

48

6. Technical Documentation
In this section, we shall provide the technical details about how the software system is

designed. We shall state here the programming languages used, reused algorithms and

programs and finally we shall discuss the software tools and environments which were used

during works on the software system.

6.1 Programming Languages

There were several programming languages used to realize our project. They include:

• Java: The java programming language was the main language used for the majority of

our software system

Source: https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html

• JavaScript/jQuery: These languages was used extensively to help make our user

interfaces very responsive and more interactive

Sources:

1. https://www.javascript.com/

2. https://jquery.com/

• Java Persistent Query Language (JPQL): This language was used to perform all the

queries to our database. It is more like the popular SQL language we all know

Source: https://docs.oracle.com/html/E13946_01/ejb3_langref.html

https://docs.oracle.com/javase/8/docs/technotes/guides/language/index.html
https://www.javascript.com/
https://jquery.com/
https://docs.oracle.com/html/E13946_01/ejb3_langref.html

49

6.2 Reused Algorithms and Programs

Our system was so extensive that we could not implement all of its functionalities within the

time period that we had, so we reused a lot of algorithms and libraries to help us.

• Light bootstrap: An Admin Dashboard template that we used to design the main

template for our system.

Source: https://www.creative-tim.com/product/light-bootstrap-dashboard

• Java Server Faces (JSF 2.2) MVC Framework: Mainly used to build our server-side user

interfaces.

Source: http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html

• JasperReports 6.1.0: Our reporting system was designed with the help of this library.

Source: https://community.jaspersoft.com/project/jasperreports-library

• Guava 16.0.1: This google library was used to realize the encryption we used to secure

the user password in the database

Source: https://opensource.google.com/projects/guava

• PrimeFaces 6.1: A user interface framework for Java EE that was used for all the data

tables in our system as well as the display of messages, either as a normal message or a

growl message

Source: https://www.primefaces.org/

• Atmosphere Runtime 2.4.6: Client-Server framework for push notifications

Source: https://github.com/Atmosphere/atmosphere

• GitHub: A web-based Git repository hosting service. It was used to version control our

system as well as provided us with an easy source code management functionality.

URL: https://github.com/

https://www.creative-tim.com/product/light-bootstrap-dashboard
http://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html
https://community.jaspersoft.com/project/jasperreports-library
https://opensource.google.com/projects/guava
https://www.primefaces.org/
https://github.com/Atmosphere/atmosphere
https://github.com/

50

6.3 Software tools and Environment

• NetBeans IDE 8.2: The Integrated Development Environment (IDE) that was used to

write all the codes required by our software system

• Glassfish Sever 4.1.1: The underlying web application server for running application

• MySQL Database Server: This is a relational database management system we using to

maintain our database

• iReport: Used in the design of the look and feel of our reports/certificates

• SQLyog Ultimate: The GUI application that works with the MySQL database server. We

are using it to model and manage our MySQL databases from a GUI

• StarUML: We used this tool for the design of the majority of our UML diagram which

includes: Use Cases, Activity, Component, Deployment and Class Diagrams

• Cacoo: A cloud-based system we used to model the logical architectural design of our

system

51

7. Acceptance Testing
In this section, we show the results for the functional, robustness and time-efficiency testing for

our system.

7.1 Functional Testing

We are conducting these test cases to very that our software system performs all the functions

correctly as defined in the design specifications.

1) Birth Details Registration

Test Case ID F01 - Birth Details Registration

Description Registrar registering birth details into system

Pre-Condition Registrar has successfully logged into his/her dashboard

Task Steps
• Registrar clicks on ‘Birth Registration Link’ on dashboard

• Fills out all the required fields

• And click on the ‘Save’ button

Expected Results Birth details will be saved in the system for further approvals

Input Screenshot: Registrar enters details into registration forms

52

Output Screenshot: Registrar gets a notification for confirmation of submission

2) Birth Certificate Request

Test Case ID F02 - Birth Certificate Request

Description Registrar makes a request for a birth certificate for a client

Pre-Condition Registrar is logged in and client already has birth details in system

Task Steps
• Registrar searches for birth details in the system

• Selects that particular birth details

• And then click on the ‘Submit Request’ button

Expected Results Birth cert request will be saved in the system for further approvals

53

Input Screenshot: Registrar searches and selects birth registration details, then submits request

Output Screenshot: Registrar gets a notification for confirmation of submission

54

3) District Admin Birth Registration Approval

Test Case ID F03 - District Admin Birth Registration Approval

Description District Admin approves and confirms birth details registration

Pre-Condition District Admin is logged into dashboard

Task Steps

• District Admin clicks on ‘Birth Registration’ link under

Registration Approval Sub-Category

• Birth details is selected

• Approve link is clicked

Expected Results Birth registration details approved and confirmation message shown

Input Screenshot: District Admin searches and selects birth registration details, then approves

55

Output Screenshot: District Admin gets a notification for confirmation of submission

56

4) Birth Certificate Request Approval

Test Case ID F04 – District Admin Birth Certificate Request Approval

Description District Admin approves a request for a birth certificate

Pre-Condition District Admin is logged into dashboard

Task Steps

• District Admin clicks ‘Birth Certificate’ link under Cert.

Request Approval Sub-Category

• Certificate request details is selected from list

• ‘Approve Request’ link is clicked

Expected Results Birth cert request has been confirmed and approved for printing

Input Screenshot: District Admin views list of requests and selects a request

57

Output Screenshot: District Admin gets a notification for confirmation of approval

58

5) Regional Admin Birth Certificate approve and print

Test Case ID F05 - Regional Admin Birth Certificate approve and print

Description Regional Admin approves and generates a birth certificate request

Pre-Condition Regional Admin is logged into dashboard

Task Steps

• Regional Admin clicks on the ‘Birth Certificate’ link under the

Certificate Request Sub-Category

• A particular district is then selected to retrieve requests

• Regional Admin clicks on ‘Print Certificate’ link

Expected Results Request is approved and a birth certificate is generated in pdf format

Input Screenshot: Regional Admin loads request by district selected

59

Output Screenshot: A birth certificate is generated with the details of the requester

60

7.2 Robustness Testing

We performed robustness testing to help us detect the vulnerabilities of our software system

under an unexpected input or in a stressful environment.

1) Birth Registration with empty fields

Test Case ID R01 - Birth Registration with empty fields

Description Registrar tries to submit a birth registration with incomplete fields

Pre-Condition Registrar is logged into dashboard

Task Steps
• Registrar clicks on the ‘Birth Registration’ link

• Enters birth details with some fields incomplete/empty

• Then clicks on the ‘Save’ button

Expected Results
Registrar would be shown error messages on portions of form that are
incomplete

61

Input Screenshot: Registrar fills out form with incomplete information

Output Screenshot: Appropriate error messages are shown at the exact places with incomplete

information

62

2) Add New System User with empty fields

Test Case ID R02 - Add New System User with empty fields

Description Regional Admin tries to add a new system user with incomplete fields

Pre-Condition Regional Admin is logged into dashboard

Task Steps
• Regional Admin clicks on the ‘Add New User’ link

• Enter new user details leaving some form fields incomplete

• Then clicks on the ‘Save’ button

Expected Results
Regional Admin would be shown error messages on portions of form
that are incomplete

Input Screenshot: Regional Admin fills out form with incomplete information

63

Output Screenshot: Appropriate error messages are shown at the exact places with incomplete

information

3) Change Password

Test Case ID R03 - Change Password

Description System user wishes to change current login password details

Pre-Condition System user is currently logged into dashboard

Task Steps
• User clicks on the ‘Change Password’ link on the page

• Password details are entered with unmatched new passwords

• User clicks on the ‘Confirm’ button

Expected Results User would be shown an appropriate error message

64

Input Screenshot: User enters current login details, then unmatched new passwords

Output Screenshot: Appropriate error messages displayed alerting user of exact mistake made

65

4) Login with wrong credentials

Test Case ID R04 - Login with wrong credentials

Description User tries to log into system with wrong username and password

Pre-Condition User already has an account.

Task Steps
• Enters any username and password in login fields

• Click on the ‘Submit’ button

Expected Results User would be shown error messages

Input Screenshot: User enters wrong credentials into login form

66

Output Screenshot: Appropriate error messages are displayed to user

5) Deceased Registration with Inappropriate date

Test Case ID R05 - Deceased Registration with Inappropriate date

Description
Registrar tries to submit a deceased registration details with date of
deceased greater than the even the current day of the registration

Pre-Condition Registrar is logged into system

Task Steps

• Registrar clicks on the ‘Death Registration’ link on dashboard

• All details are entered but with a date of death greater than

current date

• Registrar then clicks on the ‘Save’ button

Expected Results
Registrar would be shown an appropriate error messages warning
him/her about wrong date input

67

Input Screenshot: Registrar fills out deceased registration form with wrong date of death

Output Screenshot: Registrar is shown an appropriate error message, warning him/her that

date of death cannot be in the future

68

7.3 Time-Efficiency Testing

We conducted some time-efficiency test on our software system with various tools online. This

was to make sure that the system was fast and responsive enough to help user achieve their

goals in a more efficient way rather than frustrating them.

There are multiple online tools for these test, we decided to leverage the services of:

• Pingdom

• GtMatrix

Pingdom

This is a tool that helped us test the load time of the main and in demand pages of our system.

The good thing is that you could choose the location to test from so as to determine how fast

your system loads with distance

1) Landing Page

69

Report Summary

 We could see from the above report that our software system has an overall performance of

75% and loads faster than 90% of other sites tested with this platform. The file request and

overall load time was 941ms from the New York City test location.

Full Report Link: https://tools.pingdom.com/#!/bSASao/http://node13526-env-6959028.ny-

1.paas.massivegrid.net:8080/birds-app/

2) Registrar Main Page

https://tools.pingdom.com/#!/bSASao/http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app/
https://tools.pingdom.com/#!/bSASao/http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app/

70

Report Summary

 We could see from the above report that our software system has an overall performance of

82% and loads faster than 94% of other sites tested with this platform. The file request and

overall load time was 723ms from the New York City test location.

Full Report Link: https://tools.pingdom.com/#!/bKA5b1/http://node13526-env-6959028.ny-

1.paas.massivegrid.net:8080/birds-

app/pages/registrar/registrar.xhtml;jsessionid=f5f6fc9cf0d22dcabde5a29f5b14

3) District Administrator Main Page

https://tools.pingdom.com/#!/bKA5b1/http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app/pages/registrar/registrar.xhtml;jsessionid=f5f6fc9cf0d22dcabde5a29f5b14
https://tools.pingdom.com/#!/bKA5b1/http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app/pages/registrar/registrar.xhtml;jsessionid=f5f6fc9cf0d22dcabde5a29f5b14
https://tools.pingdom.com/#!/bKA5b1/http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app/pages/registrar/registrar.xhtml;jsessionid=f5f6fc9cf0d22dcabde5a29f5b14

71

Report Summary

 We could see from the above report that the district admin’s main page has an overall

performance of 80% and loads faster than 52% of other sites tested with this platform. The file

request, which is quite huge compared to previous ones, and overall load time was 3.04s from

the Stockholm test location in Sweden.

Full Report Link: https://tools.pingdom.com/#!/c6Z3F9/http://node13526-env-6959028.ny-

1.paas.massivegrid.net:8080/birds-

app/pages/dist_admin/district_admin.xhtml;jsessionid=f4767dc8494fd17a0887a0ea972d

4) Regional Administrator Main Page

https://tools.pingdom.com/#!/c6Z3F9/http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app/pages/dist_admin/district_admin.xhtml;jsessionid=f4767dc8494fd17a0887a0ea972d
https://tools.pingdom.com/#!/c6Z3F9/http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app/pages/dist_admin/district_admin.xhtml;jsessionid=f4767dc8494fd17a0887a0ea972d
https://tools.pingdom.com/#!/c6Z3F9/http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app/pages/dist_admin/district_admin.xhtml;jsessionid=f4767dc8494fd17a0887a0ea972d

72

Report Summary

 We could see from the above report that the regional admin’s main page has an overall

performance of 82% and loads faster than 88% of other sites tested with this platform. The file

request, which is quite huge compared to previous ones, had an overall load time was 1.08s

from the New York City test location.

Full Report Link: https://tools.pingdom.com/#!/hqATS/http://node13526-env-6959028.ny-

1.paas.massivegrid.net:8080/birds-

app/pages/reg_admin/regional_admin.xhtml;jsessionid=f59f2b23353eb567cd8066299ad9

GtMetrix

This is another tool we used that gave us an insight on how well our site loads as well as

provided us with actionable recommendations as to how to optimize it

https://tools.pingdom.com/#!/hqATS/http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app/pages/reg_admin/regional_admin.xhtml;jsessionid=f59f2b23353eb567cd8066299ad9
https://tools.pingdom.com/#!/hqATS/http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app/pages/reg_admin/regional_admin.xhtml;jsessionid=f59f2b23353eb567cd8066299ad9
https://tools.pingdom.com/#!/hqATS/http://node13526-env-6959028.ny-1.paas.massivegrid.net:8080/birds-app/pages/reg_admin/regional_admin.xhtml;jsessionid=f59f2b23353eb567cd8066299ad9

73

5) Site test with GtMetrix

Another process whose time was calculated but could not be captured by these online tools is the

Certificate Generation. Per our calculation, it took on average 5seconds to generate each report – which

is a very good time for such a process.

74

8. Contribution of Each Team Member

During the development of BiRDS, we followed a methodology that allowed us to work on all

the project phases together side-by-side to reach our goals. We used a Software Version

Control (SVC) system called GitHub where all the code of the projects was always available and

each member knew what was changed at any time. This allowed each member the freedom to

make changes and add ideas without having to always meet to do so. Documentations were

also brainstormed and worked on together during our scheduled meetings.

At the end, the shared hard work and dedication by each member paved the way to

successfully complete all the phases of our system.

75

References

[1]"Civil registration: why counting births and deaths is important", World Health Organization,
2018. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs324/en/.
[Accessed: 27- Feb- 2018].

[2]"Birth registration - UNICEF DATA", UNICEF DATA, 2018. [Online]. Available:
https://data.unicef.org/topic/child-protection/birth-registration/. [Accessed: 27- Feb-
2018].

[3]"Newborn Care Programme | Division | Ghana Health Service", Ghanahealthservice.org,
2018. [Online]. Available: http://ghanahealthservice.org/newborn/programme-
scat.php?ghspid=3&ghsscid=98. [Accessed: 28- Feb- 2018].

[4]"Mental Models and User Experience Design", Nielsen Norman Group, 2018. [Online].
Available: https://www.nngroup.com/articles/mental-models/. [Accessed: 03- Mar- 2018].

[5]"Model–view–controller", En.wikipedia.org, 2018. [Online]. Available:
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller. [Accessed:
17- Mar- 2018].

[6]E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design patterns. Boston, Mass.: Addison-
Wesley, 2016.

[7]"JSON", Json.org, 2018. [Online]. Available: https://www.json.org/. [Accessed: 22- Mar-
2018].

[8]"SHA-256 Hashing in Java | Baeldung", Baeldung, 2018. [Online]. Available:
http://www.baeldung.com/sha-256-hashing-java. [Accessed: 24- Feb- 2018].

http://www.who.int/mediacentre/factsheets/fs324/en/
https://data.unicef.org/topic/child-protection/birth-registration/
http://ghanahealthservice.org/newborn/programme-scat.php?ghspid=3&ghsscid=98
http://ghanahealthservice.org/newborn/programme-scat.php?ghspid=3&ghsscid=98
https://www.nngroup.com/articles/mental-models/
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://www.json.org/
http://www.baeldung.com/sha-256-hashing-java

