

IoT BASED FIRE & SAFETY SYSTEM FOR SMART

HOMES

PROJECT FINAL REPORT

Prepared for: Dr. Maher Elshakankiri

Prepared by: Sibdow Abdul-Jalil Iddrisu (200379358)

Date: 26th August, 2019

Course Name: CS890EP – Internet of Things

Abstract – Home fires have become very rampant and a very disturbing issue. They cause

extreme damage including the loss of lives and property. Most home fires are caused by the

carelessness or negligence of home owners and are greatly catalysed by other environmental

parameters. Gas leakages and indiscriminate smoking are the major causes of such disasters

and there has been a lot of sensitization and education by organizations and the fire

department as to how to prevent these incidents from occurring. There has also been some

technological implementation like the installation of smoke detectors in our homes but these

have proven to be quite useful to only an extent. These technologies only alert when the fire has

already started and probably spread over a greater perimeter of the home. A system is then

required to be able to detect the possibility of this fire disaster before they even start or at least

detect them early enough so action can be taken to contain it before it gets out of hand.

Keywords: Home Fires, Arduino, Internet of Things (IoT), Sensors, Fire Safety

1. INTRODUCTION

1.1 What is Internet of Things (IoT)?

The Internet of Things (IoT) has revolutionized the way the internet works. This is the fourth

(4th) major evolutionary phase of the internet after Connectivity (Digitized Access), Networked

Economy (Digitized Business), and Immersive Experience (Digitized Interaction). It is basically

the network of physical objects that contain embedded technology to communicate and sense

or interact with their internal states or the external environment [1]. Apart from the network,

an IoT infrastructure typically consists of sensors and actuators that helps the system interact

with the environment in which it is deployed. A sensor is a device that converts or changes a

physical phenomenon (like temperature, humidity, etc.) into electrical outputs. An actuator is

the vice versa, in that it converts an electrical input into a physical output and can directly make

changes to the environment in which they reside (like sending a signal to turn on a water

pump).

 In the earlier days of the internet, it was more of ‘Internet of People’ as stated above, where

individuals connected to the internet with their devices (ex. Mobile phones, computers) to

communicate and share data. With the invent of IoT, which was estimated to reach 50 billion

devices by 2020, things (such as sensors and/or actuators) can be installed at various locations

to monitor and transmit data to a storage autonomously without the intervention of a human

agent. Some typical usage of IoT are in healthcare, smart homes, smart cities, smart grids, etc.

1.2 IoT in Smart Home Systems

The Internet of Things have become predominant in our lives and its application in our homes,

popularly termed Smart Homes, have become very common and necessary; this is because it

tends to increase comfort and quality of life of the people living in such a home. A Smart Home

can be viewed as an environment for living that has highly advanced automatic systems [2].

Internet of Things application to Smart Homes can be generally grouped into three (3) sub-

categories. Firstly, Fire and Safety; where and IoT system is deployed in a home to monitor the

environment and report certain changes in certain defined parameters. A typical application

would be to monitor for the presence of gases (ex. Nitrogen, CO) for air quality monitoring and

be able to notify the occupants of the home if there is a danger of breathing in bad air and be

able to make suggestions as to what is to be done. Also, the deploying of sensors to monitor

the presence of flammable/combustible gases (like LPG – which is common in our homes)

would fall under this category as they are intended to prevent fires from occurring by notifying

home owners of the presence of such a gas in the air before it gets out of hand. In addition to

gas monitors, flame sensors could also be deployed to aid in the detection of flame within

certain ranges and be able to alert home occupants to evacuate as soon as possible before,

maybe being trapped in the flame.

Secondly, Security – this is a major concern for every home owner as we would not like our

hard-earned property to be stolen and we want to be safe in our homes as that is one of the

main functions of a home; to keep us safe. The IoT technology can help enforce the security we

need in our homes. Systems can be designed and developed to detect intrusion and

unauthorized breaches to the home perimeter, this can greatly help home owners to be able to

see the dangers and act proactively before things get out of hand.

Lastly, we can view IoT in Smart Homes as helping provide Control to home owners in the sense

that they are able to have access to equipment in their homes and be able to control them

remotely either from their cellphones, tablets or even laptops. For instance, a home owner

returning from work and wants their home cool before getting there can get access to the air

conditioning system in the house through the internet and switching them on before arriving

home

The implementation of IoT in our homes are intended to make the home as comfortable as

possible and increasing the quality of life for the better.

1.3 IoT in Home Fire Detection and Prevention

IoT provides us the necessary tools to be able to detect and prevent fire disasters from

happening. There are certain parameters and phenonium that can point to the possible

occurrence of fire, these parameters can range from the presence of LPG to high room

temperatures. With the advent of IoT, we are presented with a myriad of sensors and

technologies to help in this regard. We are afforded the opportunity to be able to use sensors

to monitor these parameters and be able to see in real-time what is going on in our homes,

both when we are home and away.

2. MOTIVATION & RELATED WORK

The motivation of this work is being driven by the need to improve the early detection of home

fires. There have been several implementations as well as technological research conducted

with the aim of detecting and preventing fire disasters from occurring so as to mitigate the

damages that they come along with; loss of lives and property alike.

Ahmed Imteaj et al. [3] proposed a system which was aimed at helping the Ready-Made

Garment (RMG) industry to be able to detect and control accidents in factories (like fire

disasters). They made use of several sensors like the light intensity sensor for recognizing

fires/flames. The sensors are placed in strategic locations within the factory so they can

accurately report incidents. They used the Arduino Microcontrollers for the data aggregation

from the various sensors and a central node (Raspberry Pi microcontroller) for controlling the

various Arduino units. A camera was also deployed to take pictures if a sensor reports an

incident, just to have a visual confirmation of the situation. Their proposed system included

actuators to turn off gas outlets in case there was a fire and an automated triggering of a GSM

module to send an alert to the nearby fire department.

The authors in [4] also proposed a forest fire alerting system that makes use of a GPS module to

send exact coordinates. They made use of the temperature and smoke sensors to monitor the

environment for changes in these parameters. When the thresholds set are exceeded, the

Arduino microcontroller triggers the GPS module to generate the current coordinates of the

device’s location and it is then being sent to the cloud using a Wi-Fi module for internet

connectivity. The data in the cloud is then consumed by a monitoring station where individuals

can have access to the data and make decisions based on that.

Sourav et al. [5] designed and developed a fire detection system for smart homes that is based

on IoT Data Analytics. They made use of machine learning models such as K-Nearest Neighbor

and decision tree to be able to classify whether there is a fire or not and also a maybe fire

situation. Their results after tests showed a very high accuracy for both models with the K-NN

slightly passing the Decision tree model. An SMS alert is also triggered by their system in case

there is a fire using a python module.

Fernandino S. Perilla et al. [6] conducted studies to design and integrate IoT using the Arduino

Microcontroller to help detect fire occurrences and be able to give alerts to fire-fighters,

inhabitants of the area and other authorities. Their design included sensors to record changes

in environmental factors and send alerts to fire fighters and residence when certain thresholds

were exceeded. Some sensors employed in the design included: smoke, flame, motion,

temperature, humidity and gas sensors; their values recorded are sent along with GPS

coordinates to the Arduino for further processing and actions. Their proposed system included

an external storage for the data being generated and it stores just the values generated by the

sensors so they may be accessed in the future for analytics purposes.

The authors in [10] proposed a fire safety system that could be able to detect fires before they

are triggered. They base their study on the fire cracking industry where fire is easy to occur due

to the abundant presence of gun powder and other easily flammable and combustible

substances.

3. IoT BASED FIRE & SAFETY SYSTEM FOR SMART HOMES

In this section, we provide a description of the design and implementation of the system that

would enable us to easily detect and prevent fire disasters from occurring in our homes. The

system consists of sensors that are able to monitor changes in the environment in which they

are being deployed. Parameters such as temperature, humidity, presence of smoke, presence

of LPG and the presence of flame are monitored by the various sensors being deployed, as the

presence of these parameters are a strong indication that there may be a fire around or a fire is

about to start if nothing is done. These sensors are interfaced with a microcontroller,

specifically the Arduino microcontroller which serves as a control and sink node for the sensors

to transmit the data they generate. The Arduino microcontroller in it self is unable to send data

to the internet as it is originally not built with such capabilities, so we made use of a 3rd party

Wi-Fi module to help us connect to the internet gateway and be able to transmit the data being

generated by the various sensors to a cloud storage through the internet. As the data is being

transmitted from the local source onto the cloud, the data termed “Data in Motion” would be

able to be seen by the end-user in real time and be visualized on beautiful and intuitive

dashboards. Also, the data is stored in data buckets so that they may be used in the future for

investigations and analytics works.

The figure below shows the block diagram for the proposed system, where we have all the

sensors and output electronic units interfaced with the Arduino microcontroller, and the

Arduino in turn connected to the internet gateway with the help of the Wi-Fi module to

transmit data to the cloud.

Fig. 3.1: Block Diagram of Proposed System

We made use of some hardware components and supplies in the implementation of the

proposed system as well as some applications and online service. We shall use the next few

paragraphs to describe and explain in details these parts and services being made use of in the

project and how they were used.

3.1 Description of Individual Hardware Components and Supplies of the Proposed System

The proposed system consists of several sensors and electronic output devices. It is also

composed of a microcontroller for the control of the sensors and output units, a breadboard to

help us connect the jumper wires in a clean and effective manner, a Wi-Fi module to help

connect to the internet and an external cloud storage. Below is a list and description of the

various tools/hardware used in our project:

➢ Arduino Uno Microcontroller Unit: This is the main processing unit used in the project

that provides a mechanism for the sensors to be interfaced with it and be able to

transmit data. It is a widely used microcontroller and we choose to work with it in this

project because it is a proven technology and most importantly cheap and easy to

acquire. It comes with a power supply unit, memory, processor and a lot of ports for

connecting and communicating with sensors and other external hardware equipment.

➢ DHT11 Sensor: This is the sensor we are using to measure the temperature and

humidity values of the environment we intend to monitor. It comes with three (3) pins

to connect to the Arduino. We have the VCC pin for the 5V power supply and the ground

pin; along with these, we also have the data pin that is able to transmit the data

recorded by the sensor to the Arduino and also be able to receive control signals from

the Arduino as well.

➢ Flame Sensor: This sensor is responsible for detecting the presence of flame within a

certain distance. It is a digital sensor and for that matter sends 0 to the Arduino for the

absence of flame and 1 for the presence of flame.

➢ MQ2 Gas Sensor: This sensor is typically used in gas leakage detection. It is suitable for

the detection of various parameters such as: H2, LPG, CH4, CO, Alcohol, Smoke or

Propane.

➢ NodeMCU Wi-Fi Module: This is the module that is used to interface the Arduino

microprocessor with the internet gateway. The data generated by the sensors and sent

to the Arduino is able to reach the cloud by the help of this module.

➢ LCD Display Screen: This module helps us display the readings from the various sensors

to the user. It is also responsible for the display of alert messages should there be a

danger to the home occupants.

➢ Buzzer: There is the need to sound an alarm and bring to the attention of home owners

an impending danger, the buzzer helps us achieve this functionality

➢ Breadboard: This is a solderless device that is mostly used to temporarily prototype

electronic and circuit designs [7]. It makes it easier for us to connect our components in

a quick and effective manner as well as keeping our jumper wire connection clean and

easy to trace.

3.2 Description of Application and Online Service used in the Proposed System

We basically made use of only two (2) components with regards to this heading:

➢ Arduino IDE: The Arduino Integrated Development Environment; a cross-platform

development environment written with the java programming language [8], is used to

write the code required by our proposed system. It makes it easy for us to quickly design

and deploy software onto our hardware as it supports the code structure of the popular

C and C++ hence does not present a very steep learning curve. It also comes with inbuilt

software libraries that makes development even easier and faster. A typical program

written with the Arduino IDE comes with only two (2) functions and maybe some

optional global declarations; which may include variables and library references. The

classical functions are the setup() and loop() functions. As the names imply, the setup()

basically initializes whatever resources are needed by the program and hardware and

the loop() contains the instruction that will be run over and over again by the program

and hardware. In our system, we made use of two separate software file (sketches)

developed using the IDE; one for the Arduino UNO Microcontroller and the other for

the NodeMCU Wi-Fi Module. The individual files (sketches) were pushed onto their

respective hardware components through specific board and port definitions from the

IDE.

Fig 3.2: Sample Code for an Arduino Project

➢ Thinger.io Cloud Services: Data being generated by sensors are transmitted through the

internet to a cloud storage so they may be accessed in the future for data analysis and

maybe investigations. We are using a 3rd party cloud service, called thinger.io, because

it will help us in the quick prototyping and testing of the system. We choose this

platform because it is open source and free and the most robust platform to build our

data driven system; its agnostic nature makes it possible to connect any device with

internet connectivity [9] and hence does not limit our future possibilities of adding

different devices from other vendors. It supports bi-directional communications in real-

time [9], and gives us the possibilities of visualizing our data in real-time, with beautiful

dashboards, as they come in from the sensors. It comes with several other features and

below is a diagram that depicts typically the general overview of the platform:

Fig. 3.3: General Overview of the Thinger.io Platform [9]

https://thinger.io/

3.3 Technical Implementation of the Various Hardware Parts of the Proposed System

Below is the breadboard and schematic representation of the connections between the

Arduino Uno Microcontroller, the various sensors/output units and the NodeMCU. Here, the

breadboard is used to arrange the jumper wire connections to the various components. The red

and black jumper wires represent the 5V power supply and Ground connection respectively. All

the sensors and output components get their power supply and ground connection from the

Arduino through the 5V pin and GND pin respectively, connected with the breadboard. The

Arduino and NodeMCU in turn get their power supply from an external supply source which can

range between 9V and 12V. In our proposed system, the buzzer is connected to the digital pin 9

of the Arduino. Also, the MQ2 gas sensor is connected to the A0 analogue pin, the DHT11 data

pin is connected to digital pin 7 and the flame sensor connected to digital pin 4. The IC2 LCD

display makes use of the analogue pins A4 and A5. The NodeMCU pins D5 and D6 are serially

connected to the Arduino digital pins 5 and 6 respectively, so they can be able to communicate.

They are connected like: (NodeMCU [D5, D6] → Arduino [5, 6]) TX → RX and RX → TX.

Fig 3.4: Breadboard Representation of Hardware Components

Fig 3.5: Schematic Representation of Hardware Components

3.4 Implemented Cloud based Service

As mentioned earlier, we employed the services of a 3rd party cloud system named thinger.io.

This platform is designed to be intuitive and you can get a project up and running on it within

the shortest possible time. Here, we describe the various features we implemented and made

use of from the cloud platform:

➢ Console Dashboard: This provides us with a summary of the various parts of the

platform and their current statuses. It gives an overview of the devices connected,

dashboards configured, data buckets connected and endpoint configuration summaries.

It also points to the locations of all the connected devices as well as gives a summary of

the data transmission rates.

➢ Device Configuration Management: This functionality allows us to easily configure and

add the various devices we would like to make visible on the cloud. It presents us with

the status of the device, the IP address, amount of transmitted and received data as well

as how long device has been online. Also, we are able to view the datapoints sent to the

device by the various sensors through the device API.

➢ Dashboards: Thinger.io provides us with the functionality to design very beautiful and

attractive dashboards which does not only convey the information from the sensors but

provides users with interactive features so they could interact with the graphs to better

understand what is going on. The feature allows us to add various dashboard widgets

ranging from time-series graphs to text and many more. The dashboards can be shared

with anyone who has an interest in knowing what is going on; the data displayed on the

dashboard can be gotten directly from the sensors and/or from the data buckets on the

cloud storage.

➢ Data Buckets: This a feature that is able to save the data sent by the sensors into a

storage so it can be retrieved for future use. The data in the buckets can be exported in

various data formats including Comma Separated Values (CSV), Attribute-Relation File

Format (ARFF) and JavaScript Object Notation (JSON)

➢ Endpoints: This is a functionality that allows the cloud system to be able to trigger an

event when certain set conditions or thresholds are reached. These events can range

from email, HTTP requests, IFTTT Webhook Trigger, Keen IO Analytics, Initial State Event

and even a Thinger.io Device call (where an action is sent to another connected device).

In our system, we made use of the email endpoint where an email is sent to a registered email

address when a fire is detected. Shared dashboard links are included in the email so a user can

use it to navigate directly to the dashboards displaying the sensor readings.

The data transmission efficiency and real-time bi-directional communication our chosen cloud

system provides makes our proposed solution different from the other existing fire and safety

systems. With respect to transmission efficiency, most IoT platforms use the traditional HTTP

(Hypertext Transfer Protocol). In HTTP, every device sending data to the cloud issues the HTTP

request each time and this way of transmission is inefficient in terms of bandwidth, latency and

power consumption which are already limited for IoT devices. Thinger.io provides us with an

approach similar to MQTT (Message Queuing Telemetry Transport); which is based on the

publisher-subscriber messaging protocol, but defines a custom payload encoding scheme called

Protoson (PSON) [11] that is much better in terms of transmission efficiency. The encoding

scheme is used to improve memory footprint, save bandwidth, and reduce power consumption

on devices [9]. We are also able to implement bi-directional communication, in that when it

becomes necessary to control a device over the internet in real time, the platform provides us

with the functionality of bidirectional communication between devices and the cloud server.

4. CONCLUSION AND FUTURE WORKS

Home fires are indeed devastating when they strike and with the advent of IoT, it has become

easier and necessary to design, develop and deploy systems to help prevent these incidents

from occurring. By the use of various sensors and technologies at our disposal, home fires can

be prevented or at least detected quickly so as to prevent tremendous damages. The system

can also be deployed in Industrial fire monitoring (Manufacturing and Coal mines), forest fire

monitoring, oil rigs safety monitoring and many other fields.

This proposed system does not fully solve the problem of having a fire monitoring system in the

home which is robust, effective and efficient. If this current system were required to be

deployed in a very large environment; it may be impractical at certain locations (like tunnels) or

extremely expensive to do so; as we would need to deploy the module repeatedly across the

area. A mobile fire detection system, where a rover is deployed to carry the current system

around a certain range in order to be able to record and report conditions, is being planned for

future works. We also intend to include actuators to the current system so they may be

controlled to start a water pump to curb any occurrence of fires before the fire department

gets there. Also, there may be alarms of flames which may not necessarily be the case, hence, a

camera would be included to the current system to be able to capture images for confirmation

by a monitoring station before any actions are taken. Finally, an automatic notification of a

nearby fire station through SMS is also intended for future works of this project.

5. CHALLENGES AND LIMITATION

Through the development of our system, there were a few challenges and limitations that were

encountered:

1. The connection of the various sensors and output units to the Arduino microcontroller

requires a lot of jumper wires, even with the help of the breadboard; this makes it

sometimes difficult to trace and manage each connection properly

2. The current design does not protect the sensors enough from fire and when sensors get

too close to a fire, it may be damaged.

3. The current design can only be able to detect readings at only the location they were

deployed and up to a certain radius.

4. The calibration of the gas sensor was an issue, as proper gas sensor calibration tools

were very expensive, so we had to go with the software calibration method which may

once a while not provide desired values.

REFERENCES

[1] "Internet of Things Defined - Tech Definitions by Gartner", Gartner IT Glossary. [Online]. Available:

https://www.gartner.com/it-glossary/internet-of-things/

[2] T. Malche and P. Maheshwary, "Internet of Things (IoT) for building smart home system," 2017

International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Palladam,

2017, pp. 65-70. doi: 10.1109/I-SMAC.2017.8058258

[3] A. Imteaj, T. Rahman, M. K. Hossain, M. S. Alam and S. A. Rahat, "An IoT based fire alarming and

authentication system for workhouse using Raspberry Pi 3," 2017 International Conference on Electrical,

Computer and Communication Engineering (ECCE), Cox's Bazar, 2017, pp. 899-904.

doi: 10.1109/ECACE.2017.7913031

[4] J. K, J. K, J. R, K. R and M. N, "Forest Fire Alerting System With GPS Co-ordinates Using IoT," 2019 5th

International Conference on Advanced Computing & Communication Systems (ICACCS), Coimbatore,

India, 2019, pp. 488-491.

doi: 10.1109/ICACCS.2019.8728383

[5] S. K. Bhoi et al., "FireDS-IoT: A Fire Detection System for Smart Home Based on IoT Data Analytics,"

2018 International Conference on Information Technology (ICIT), Bhubaneswar, India, 2018, pp. 161-165.

doi: 10.1109/ICIT.2018.00042

[6] Fernandino S. Perilla, George R. Villanueva, Jr., Napoleon M. Cacanindin, and Thelma D. Palaoag.

2018. Fire Safety and Alert System Using Arduino Sensors with IoT Integration. In Proceedings of the

2018 7th International Conference on Software and Computer Applications (ICSCA 2018). ACM, New

York, NY, USA, 199-203. DOI: https://doi.org/10.1145/3185089.3185121

[7] Wiring.org.co. (2019). Breadboard \ Wiring. [online] Available at:

http://wiring.org.co/learning/tutorials/breadboard/ [Accessed 22 Aug. 2019].

[8] Bush, S. (2019). Updated: Arduino announces FPGA board, ATmega4809 in Uno Wi-Fi mk2, cloud-

based IDE and IoT hardware. [online] Electronics Weekly. Available at:

https://www.electronicsweekly.com/news/products/bus-systems-sbcs/arduino-announced-fpga-board-

new-atmega-uno-wi-fi-2018-05/ [Accessed 22 Aug. 2019].

[9] Bustamante, A.L., Patricio, M.A., & López, J.M. (2019). Thinger.io: An Open Source Platform for

Deploying Data Fusion Applications in IoT Environments. Sensors.

[10] N. Savitha and S. Malathi, "A Survey on Fire Safety Measures for Industry Safety Using IOT," 2018

3rd International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India,

2018, pp. 1199-1205. doi: 10.1109/CESYS.2018.8723930

[11] https://github.com/thinger-io/Protoson

APPENDIX A

Complete project code can also be found on the link below:

https://github.com/Siaj/Arduino-Fire-Safety-System-with-NodeMCU

→ Arduino Code

1. // MQ-2 sensor working
2. // Temperature and Humidity sensor working
3. // LCD displaying values okay
4. // Buzzer triggered on event(s)
5. // Potentiometer works fine in tuning the brightness of the LCD
6.
7. // DHT11 sensor
8.
9. #include <SoftwareSerial.h>
10. #include <ArduinoJson.h>
11. SoftwareSerial s(5,6); //RX, TX
12. #include <Wire.h>
13. #include <LiquidCrystal_I2C.h>
14.
15.
16. #include "DHT.h"
17. #include <MQ2.h>
18.
19. #define DHTPIN 7 // what digital pin we're connected to
20. #define DHTTYPE DHT11 //DHT 11
21. #define GAS_SENSOR A0
22. #define FIRE_SENSE 4
23. int flame_detected;
24. const char* flame;
25.

https://github.com/thinger-io/Protoson
https://github.com/Siaj/Arduino-Fire-Safety-System-with-NodeMCU

26. #define BUZZER 9
27.
28. #define mq2_threshold 100
29. #define temp_threshold 40
30.
31. int lpg, co, smoke;
32. MQ2 mq2(GAS_SENSOR);
33.
34. DHT dht (DHTPIN, DHTTYPE); //Initialize DHT sensor.
35.
36. // Set the LCD address to 0x27 for a 20 chars and 4 line display
37. LiquidCrystal_I2C lcd(0x27, 20, 4);
38.
39. void setup() {
40.
41. s.begin(115200);
42. Serial.begin(9600);
43. pinMode(BUZZER, OUTPUT);
44. pinMode(FIRE_SENSE, INPUT);
45.
46. dht.begin();
47. mq2.begin();
48.
49.
50. lcd.begin();
51. lcd.backlight();
52.
53. lcd.setCursor(0,0);
54. lcd.print("******WELCOME!******");
55. lcd.setCursor(0,1);
56. lcd.print("IoT PROJECT ~CS890EP");
57. lcd.setCursor(0,2);
58. lcd.print("***Sibdow Iddrisu***");
59. lcd.setCursor(0,3);
60. lcd.print("***Aymen Ben-Said***");
61.
62. //delay(5000);
63.
64. }
65.
66. StaticJsonBuffer<200> jsonBuffer;
67. JsonObject& root = jsonBuffer.createObject();
68.
69. void loop() {
70.
71. float* values = mq2.read(true);
72. lpg = mq2.readLPG();
73. co = mq2.readCO();
74. smoke = mq2.readSmoke();
75.
76. float t = dht.readTemperature(); // Read temperature in *C (default)
77. float h = dht.readHumidity(); // Read humidity %
78.
79. float hic = dht.computeHeatIndex(t, h);
80.
81. flame_detected = digitalRead(FIRE_SENSE);
82. if(flame_detected == 1){
83. flame = "NO";
84. }else{
85. flame = "YES";
86. }

87.
88. Serial.print("FIRE: ");
89. Serial.print(flame_detected);
90. Serial.print(";\t");
91. Serial.println(flame);
92.
93.
94. if (isnan(t) || isnan(h) || isnan(hic)) {
95. return;
96. }
97.
98. //---

----------//
99. root["temperature"] = t;
100. root["humidity"] = h;
101. root["lpg"] = lpg;
102. root["smoke"] = smoke;
103. root["fire"] = flame_detected;
104.
105. if(s.available()>0)
106. {
107. root.printTo(s);
108. }
109. // delay(3000);
110.
111. //--

-----------------//
112.
113. if (lpg > mq2_threshold || smoke > mq2_threshold || t > temp_threshold || flame_

detected == 0) { // If the current readings exceed this limit, then turn on buzzer
114. tone(BUZZER, 1000);
115. } else {
116. noTone(BUZZER);
117. }
118.
119. Serial.print("Temerature: ");
120. Serial.print(t);
121. Serial.print("*C\t");
122. Serial.print("Humidity: ");
123. Serial.print(h);
124. Serial.print("%\t");
125. Serial.print("Heat index: ");
126. Serial.println(hic);
127.
128.
129.
130.
131. // LCD display
132.
133. lcd.begin(); // display diamensions
134. lcd.backlight();
135. lcd.setCursor(0,0);
136. lcd.print("Temp=");
137. lcd.setCursor(5,0);
138. lcd.print(t);
139. lcd.setCursor(7,0);
140. lcd.print("*C ");
141. lcd.setCursor(11,0);
142. lcd.print("Hum=");
143. lcd.setCursor(15,0);
144. lcd.print(h);

145. lcd.setCursor(17,0);
146. lcd.print("% ");
147.
148. //===//
149.
150. lcd.setCursor(0,1);
151. lcd.print("LPG=");
152. lcd.setCursor(4,1);
153. lcd.print(lpg);
154. lcd.setCursor(13,1);
155. lcd.print("PPM");
156. lcd.setCursor(0,2);
157. lcd.print("SMK=");
158. lcd.setCursor(4,2);
159. lcd.print(smoke);
160. lcd.setCursor(13,2);
161. lcd.print("PPM");
162.
163. if(lpg > mq2_threshold || smoke > mq2_threshold || flame_detected == 0) { // Cur

rent thresholds set at only 100 PPM for testing purposes
164. if(flame_detected == 0){
165. lcd.setCursor(0,3);
166. lcd.print("Possible Fire >Flame");
167. }else {
168. lcd.setCursor(0,3);
169. lcd.print("Possible Fire");
170. }
171.
172. }
173. else{
174. lcd.setCursor(0,3);
175. lcd.print("No Fire Detected");
176. }
177.
178. }

→NodeMCU Code

1. //#include <ESP8266WiFi.h>
2. // Thnger.io Specifications
3. #include <ThingerESP8266.h>
4.
5. #include <SoftwareSerial.h>
6. SoftwareSerial s(D6,D5); //RX, TX
7. #include <ArduinoJson.h>
8.
9.
10.
11. #define USERNAME "Sibdow"
12. #define DEVICE_ID "nodeMCU"
13. #define DEVICE_CREDENTIAL "siaj_IoT"
14.
15. #define SSID "Siaj"
16. #define SSID_PASSWORD ""
17.

18.
19. float t = 0;
20. float h = 0;
21. float lpg = 0;
22. float smk = 0;
23. int fire;
24. const char* flame_detected;
25.
26. // Setup device details
27. ThingerESP8266 thing(USERNAME, DEVICE_ID, DEVICE_CREDENTIAL);
28.
29. void setup() {
30. pinMode(LED_BUILTIN, OUTPUT);
31.
32. // Setup WiFi
33. thing.add_wifi(SSID, SSID_PASSWORD);
34.
35.
36. Serial.begin(115200);
37. s.begin(115200);
38. while (!Serial) continue;
39.
40. // digital pin control example (i.e. turning on/off a light, a relay, configuring a p

arameter, etc)
41. thing["led"] << digitalPin(LED_BUILTIN);
42.
43. // resource output example (i.e. reading a sensor value)
44. thing["millis"] >> outputValue(millis());
45.
46. thing["jsonData"] >> [](pson& out) {
47. out["temperature"] = t;
48. out["humidity"] = h;
49. out["lpg"] = lpg;
50. out["smoke"] = smk;
51. out["fire"] = flame_detected;
52. };
53.
54. }
55.
56. unsigned long lastCheck = 0;
57. void loop() {
58. // put your main code here, to run repeatedly:
59. thing.handle();
60.
61. StaticJsonBuffer<1000> jsonBuffer;
62. JsonObject& root = jsonBuffer.parseObject(s);
63.
64. if (root == JsonObject::invalid())
65. {
66. return;
67. }
68.
69.
70.
71. t = root["temperature"];
72. h = root["humidity"];
73. lpg = root["lpg"];
74. smk = root["smoke"];
75.
76. fire = root["fire"];
77. if(fire == 1) {

78. flame_detected = "NO";
79. }else {
80. flame_detected = "YES";
81. }
82.
83. unsigned long currentTS = millis();
84. Serial.println(lastCheck);
85. Serial.println(currentTS);
86. Serial.println(currentTS-lastCheck);
87. if(currentTS-lastCheck>=1*60*1000) {
88. lastCheck=currentTS;
89. if (fire == 0) {
90. // Call thinger.io email endpoint to send an email to address
91. thing.call_endpoint("SIAJ");
92. thing.call_endpoint("AYMEN");
93. Serial.println(fire);
94. Serial.println("Endpoint called");
95. }
96. }
97. }

